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ABSTRACT

This report describes a digital system for studying the zero-

cro a sing intervals of random proc e s se 9. Probabilitie s and probability

densities defined by the zero- crossing points of various Gaussian

processes are presented. Probabilities and probability densities de-

fined by the zero-crossing points of a random process consisting of

a sine wave plus a Gaussian process are also presented. Finally,

probabilities and probability densities defined by the stationary points

of a random process consisting of a sine wave plus a Gaussian pro-

cess are presented. At present none of the probabilities or probability

densities can be derived explicitly by analytical methods. The stan-

dard deviations associated with the probability densities are also

presented. In the case of the Gaussian processes the correlation co-

efficients for two successive intervals are presented. The first mo-

ments associated with the probability densities are compared with the

exact theoretical values. All the other experimental results are corn-

pared with theoretical approximations. The statistical dependence

between the ith zero-crossing interval and the (i+n)th zero-crossing

interval is investigated.



I. INTRODUCTION

In many branches of science and technology one encounters the

basic density P n('r), the probability density of the interval T between

the mth and (m+n+l)th zero-crossing points of a random process.

This density occurs for example in the fields of statistical commun-

ication theory, oceanography, statistical mechanics, biophysics,

and control engineering. When n = 0 the interval T is celled a zero-

crossing interval. A striking experimental fact is that the successive

zero-crossing intervals of an audio process contain a great deal of

the intelligibility. For the most common random process, a

Gaussian process with arbitrary power spectrum, Pn(,r) cannot be

derived explicitly by analytical methods. For a Gaussian process

having a certain class of power spectra, S. 0. Rice (1) derived two

functions which can be used to approximate P 0 (T) and Pj(T) for

small T. More recently J. A. McFadden (2) and M. S. Longuet-

Higgins (8) derived approximations for P 0 (7-) which compare

favorably with experimental results for a larger class of Gaussian

processes having arbitrary power spectra.

Some other important theoretical work concerned with Pn(r)

has been reported by D. Middleton (3), A. Kohlenberg (4),

Kuznetsov, Stratonovich, and Tikhonov (5), V. I. Tikhonov and I. N.

Amiantov (6), M. S. Longuet-Higgins (7), C. W. Helstrom (9),H. Steinberg,

P. M. Schultheiss, C. A. Wogrin, andF. Zweig (10), D. S. Palmer (1i),

H. Debart (12), D. Slepian (13), W. M. Brown (14), J. S. Bendat
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(15), M. Kac (16), I. Miller and J. E. Freund (17), H. Zuhrt (29),

S. Ehrenfeld (30) et al., and L. I. Bialyi (31). Fewer analytical

results concerning P 0 (T), P 1 (T) exist for such a common non-

Gaussian random process as a sine wave signal plus a Gaussian

process. In short, one must conclude that mathematical

difficulties seriously limit the understanding of this statistical

phenomenon. Under such circumstances one is naturally motivated

to turn to experiment for further insight.

Most of the experimental work dealing with this problem has

been reported by G. M. White (18), Favreau, Low, and Pfeffer (19),

C. R. Gates (20), Kjell Bl~tekjaer (21), and A. I. Velichkin and

V. D. Ponomareva (22). In order to explore the problem further an

experimental system has been designed at this Laboratory. The

system differs considerably from previous experimental systems,

and the measurement is digital rather than analog. This approach

permits the system to work in conjunction with a digital computer

to help analyze the recorded data. Also, the inherent stability of a

digital system allows measurements to be made over periods of

hours or days if required.

This report presents a description of the experimental

system and the following results concerning the zero-crossing

intervals of certain Gaussian processes:
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(1) PO(T), the probability density function for successive

zero-crossing intervals.

(2) Pl(T), the probability density function for the sum of

two successive zero-crossing intervals.

(3) p(O, T), the probability that a given interval T contains

exactly zero zero-crossings.

(4) p(1, T), the probability that a given interval r contains

exactly one zero-crossing.

(5) Z(i, T), the conditional probability that the first

zero-crossing from a given zero-crossing in dT

occurs after the time dT + T.

(6) Z(2, T), the conditional probability that the second

zero-crossing from a given zero-crossing in dT occurs

after the time dT + T.

(7) The expectations and standard deviations associated

with Po(T) and P 1 (Tr).

(8) The correlation coefficient for two successive zero-

crossing intervals.

This report also presents the following results concerning

the zero-crossing intervals of a random process consisting of a
f

sine wave signal of frequency -- plus Gaussian noise such that the

signal-to-noise power ratio equals a:



(1) Po(', a), the probability density function for successive

zero-crossing intervals.

(Z) P('r, a), the probability density function for the sum of

two successive zero-crossing intervals.

(3) p a (0, r), the probability that a given interval 'r contains

exactly zero zero-crossings.

(4) pa(1, T), the probability that a given interval T contains

exactly one zero-crossing.

(5) Za(1,T), the conditional probability that the first

zero-crossing from a given zero-crossing in dT occurs

after the time dT + T.

(6) Za(Z, )0, the conditional probability that the second

zero-crossing from a given zero-crossing in dr

occurs after the time dt + T.

(7) The expectations and standard deviations associated

with Po(T, a) and PI(r, a).

Finally, this report presents the following results concerning

the intervals defined by the mathematical stationary points of a
f0

random process consisting of a sine wave signal of frequency o

plus Gaussian noise such that the signal-to-noise power ratio

equals a:

(i) Ms(T, a), the probability density function for successive

intervals defined by adjacent stationary points.
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(2) Mij(•, a), the probability density function for the sum of

two successive intervals defined by adjacent stationary

point a.

(3) ma (0, T), the probability that a given interval T contains

exactly zero stationary points.

(4) ma (1,r), the probability that a given interval T contains

exactly one stationary point.

(5) Sa(i, r), the conditional probability that the first

stationary point from a given stationary point in dr

occurs after the time dr + r.

(6) S a(2, -r), the conditional probability that the second

stationary point from a given stationary point in dr

occurs after the time dr + r.

(7) The expectations and standard deviations associated with

Me (-r. a) and Mi(,r, a).

The above probabilities and probability densities were selected

for investigation not only because they are of theoretical interest

but also because they are of practical interest, since they are

observables which are comparatively simple to measure.

The system measures the basic densities P 0 (T), Pj(r),

P 0 (T', a), PI(,r, a), Mo(,r, a) and Mi(,r, a). The remaining probabilities

are deduced by applying the theory of point-processes. The system

can measure these densities at levels other than the zero level.
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II. THE MEASURING SYSTEM

A. METHOD OF MEASUREMENT

Instead of measuring successive zero-crossing intervals

the system measures samples of zero-crossing intervals which are

sufficiently independent. However, the random processes under

investigation are metrically transitive (2 3) or ergodic, and hence

the statistics of these samples are equal with probability unity to

the statistics of successive zero-crossing intervals.

The method of measuring independent samples of zero-

crossing intervals is illustrated in Figure 1. The method consists

of opening and closing an electronic gate at the proper times

following each initiate command. The gate controls the number of

clock pulses counted by an electronic counter. The resulting count

in the electronic counter is then a measure of the sampled zero-

crossing interval. The count is printed on tape in order to monitor

each sampled time interval and to check the average zero-crossing

interval. The count is also punched on paper tape which feeds into

an IBM-7090 digital computer. The circuit details have been

reported in the literature (24).

Selecting a zero-crossing interval that corresponds in

time with the instant of an initiate command tends to favor the long

intervals. Since in general successive intervals are statistically



Appoxmael Isec.-

initials Commands r pram~~

Noise InputA

Interval Gals From
Axils-Crossing ....... ..

Interval Sampler

I I

Clock Pulses 't4.2-se

Input to Counter t-I

FIgurIAE PRSE Diia Maueen deedn
Samp ~LeS o Er-Cosn teal



-26-

dependent, this bias may also bias the selection of an interval that

occurs after an initiate command. Accordingly, the digital system

skips, with equal probability, one or two intervals immediately

following the initiate command and then measures the next interval.

By skipping these intervals the bias associated with selecting

an interval after an initiate command proves to be negligible.

The significance of this bias has been discussed recently by

McFadden (32). The system has provisions for skipping an

arbitrary number of intervals.

B. SAMPLE SIZE

Consider a histogram approximation to a probability

density Po(u) as shown in Figure 2. After measuring n mutually

independent samples of time intervals let the number of time

intervals in the range u, u + Au be denoted by Sn and let

U+Aup = j Po(u) du (1)
u

Let the random variable Xk equal one if the result of the kth

measurement is in the range u, u + Au and zero otherwise. Also,

let all the Xk have a common probability density with mean p and

2
variance a . Then

n

s= n Xk (2)
k-l
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and by using the Tchebycheff inequality

2

PrnISn-npI-t},. n, for all t > O (3)

where Pr{E} denotes the probability of the event E. For t = Cn

Pr{I S n PI .2 (4)
ne

S
Accordingly, as n - ao, -R- p with probability 1. This in

Bernoulli's (1713) celebrated weak law of large numbers which

played a central role in the notion of probability. Cantelli's (1917)

celebrated strong law of large numbers not only implies the weak

law of large numbers but also asserts that with probability one only

finitely many of the events

SI n-P I > c occur an n -- co.

In short, the weak law asserts convergence in probability; whereas

the strong law asserts convergence with probability one.

In experimental work n is limited by practical considerations.

Hence, one needs a quantitative measure of the manner in which
S

n
-j~- approaches p with increasing n. In deriving such a measure

notice that we are dealing with repeated independent trials having

only two possible outcomes. Accordingly, we will adopt a Bernoulli

model and consider each trial as a Bernoulli trial. Using the

DeMoivre limit Theorem (1718) and letting q = i-p we have that as

n -0, 00,
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Pr{ x S.n %X} Pr{-s~; S. C~x4~-~x) - .5(-x)=2 O(x)- I

(5)

where Ix /d

ONx) J ae-Y dy

S
nLet us require that -n-- approach p to within a given arbitrary amount

during 95% of our statistical experience. That is, let our confidence

level be 0.95. Then x = 1. 96,and A P0 as shown in Figure 2 in given by

Sn
poP0 SU= j-n_-pI 1.96n rJ 2  (6)

and

1.96 (7)APo 0 E- R (7)

Probobility -

Density PV(u) APe -

AU u Normalized Time

Figure 2 Histogram Approximation for Po(U).
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t.This is the basic result concerning the sample size. It was used to

compute the 95% confidence limits presented with the probability

density functions. Using this basic result we choose n to be

approximately 40, 000.
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Mi. THE SYNTHESIS SYSTEM

A. SHAPING THE POWER SPECTRUM

The method used to synthesize a Gaussian random

process with prescribed power spectral density is illustrated in

Figure 3. 'White" Gaussian noise is applied to a linear network

having a system function H(Zirf). The output of such a network

is a Gaussian random process having a power spectral density

proportional to IH(JZwff) 12. Operational amplifiers with

appropriate feedback networks were used to synthesize HJZnf).

"WHITE"
GAUSSIAN H (J2 rf

NOISE

Figure 3 Synthesis of Gaussian Noise with
Prescribed Power Spectra.

In order to investigate the zero-crosslng intervals of

Gaussian processes having certain power spectral densities of

interest, the digital system requires a "white" Gaussian noise

source having a low frequency cut-off of approximately 1 cps and

a high frequency cut-off of at least 8 Kcps. The theory and design

of such a noise source has been reported in the literature (25).

The theory is described below.
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B. THE "WHITE" NOISE SOURCE

Consider a train of periodic pulses Un(t-nTo) with fixed

duration T and with amplitudes determined by the corresponding

amplitudes of an ergodic random process. This random pulse

train may be the result of periodically sampling the amplitude of

a noise voltage y(t) as is shown in Figure 4. Generalizing

Middleton's (3a) result, the power spectral density of the random

pulse train is

W(f) K (kT)eiwkT+m

k= -co m=o

(8)

where

= average power spectral density of the individual pulses
U

Ky(tj-t 2 ) = (yj-yi)(y2 -72) = noise autovariance function

= average value of the pulse amplitudes

To = sampling period

8 = Dirac delta function.

If T0 is large compared with the noise fluctuation time --

roughly the mean spacing between successive zero-crossings of

the noise -- , then

F2 00'
wf) = WuP) (Y -Y) +o 6m f 7o

m=(
(9)
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The spectrum consists of a continuous part whose distribution

is determined solely by the shapes of the individual pulses and

whose intensity is proportional to the variance of the pulse

amplitudes. In addition there is a discrete spectrum with components

at multiples of the sampling rate 1/T 0 , whose intensity is

proportional to the square of the average pulse amplitude. A

typical W(f) is shown in Figure 5. If = 0, then spikes in W(f)

vanish. For the white noise source used in the digital system the

frequency region from near zero to a little less than 1/To cps

was extracted by a passive linear low-pass filter.

W(f) 2
SA__ ___

I 2 3 4 5 6
To To To T T

FREQUENCY -

Figure 5 The Power Spectral Density for a
Periodic Pulse Train Having Statis-
tically Independent Pulse Amplitudes,
Pulse Duration -r, and Period T
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Consider the random pulse train x(t), see Figure 4, as the

input to a linear filter with impulse response h(t) as is shown in

Figure 6. Let x(t) be represented by a weighted sum of narrow pulses:

00

x(t) = • ynu(t-nTo) (10)

n= - co

x~t h Mt VY t)LAN

TRAIN OF WEIGHTED SUPERPOSITION OF
NARROW PULSES WEIGHTED IMPULSE

RESPONSES

Figure 6 The Linear Filter.

Then, if we assume that the duration of u (t)is short compared with
0

the duration of h(t), uo(t) " 6(t) and the output V(t) of the filter becomes

CD

V(t)= J x(,r)h(t-r)dT = 2 Ynh(t-nTo) (tt)
-(0

n= -(30

The filter output V(t) consists of the weighted sum of impulse

responses whose epochs are at integral multiples of TO, as shown

in Figure 7.

What may be said regarding the amplitude distribution

of V(t) ? In general very little, for this is related to the more
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YP h(t-2To)- 2To/ ••

Y3 ht-3To) 3To.N0 • /

tei

Figure 7 Randomly Weighted Filter Impulse Responses
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general problem of determining the output amplitude distribution

of a linear system driven by a non-Gaussian random process.

However, the form of Equation (11) suggests the application of the

central limit theorem of probability. The central limit theorem

asserts that under general conditions the sum of a large number

of independent random variables approaches a Gaussian distribution.

That is to say, if n independent impulse responses produce

non-negligible effects on V(tj), and if n is sufficiently large, then

the ensemble of values V(ti) will be Gaussianly distributed. Since

the distribution is tending toward a Gaussian distribution, we can

perhaps help to minimize n by providing Gaussianly distributed

pulse amplitudes. In any case this is most convenient, for we

need only sample the amplitudes of a Gaussian noise voltage

whose fluctuation time is approximately one -tenth the sampling

period in order to sufficiently approach statistically independent

samples. That is, if the sampling rate is 10 Kcps, then we need

only sample Gaussian noise having an approximately uniform power

spectral density from approximately zero frequency to 100 Kcps.

The amplitude probability density function, p(x), for the

random pulse train x(t) whose amplitudes are Gaussianly distributed

with zero mean is given by 2
x

pAx) = T 1 an + (I _ T- )56 (X)T_ z T_
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Also, the characteristic function f(v) of p(x) is given by

fy) OD e ivx dP(x) = exp - + 1
-(00 -0

(13)

where P(x) is the probability distribution function of x. Notice

that if r = T 0 , then x(t) is a boxcar waveform and is Gaussianly

distributed. Of course, the output of the linear filter under these

conditions will also be Gaussianly distributed.

In order to apply the central limit theorem to the situation

under discussion, the impulse response of the linear filter

must have a significant width, or memory, extending out to nT 0 '

The value of n required will normally be of the order of ten. For

our particular case the value of n required to regenerate a

Gaussian distribution was experimentally determined to be of the

order of 3 or 4. Hence, for a sampling rate of 10 Kcps a low-

pass filter having a 5 Kcps cut-off frequency will suffice for the

linear filter.

Figure 8 shows the measured amplitude distributions compared

with points representing a Gaussian distribution for the case of a

sampling rate of 10 Kcps and a low-pass filter having a 5 Kcps

cut-off frequency.
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p(v)
EXPERIMENTAL THEORETICAL

CURVE •POINTS

0 v

Figure 8 The Measured Amplitude Distribution
p(v) Compared with Points Represent-
ing a Gaussian Distribution.



C. THE POWER SPECTRA CONSIDERED

The results presented in this report are concerned with

the following power spectral densities:

Wo(f) = 1 where m, = Zvf° (14)

1 + - )
0

W+(f) = 1 where al2orf (15)1 + (f) i)

S1 -

Wz(f) = I where wu Zwf2  (16)
ft. 2]2 2 T

'• 4

f4

and "Q factor" = 6.1

These particular power spectral densities were selected for

investigation because they are representative of the spectra that occur
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in many branches of science and technology, and because

theoretical approximations for the corresponding P 0 (T) have

been reported (2, 8, 19).

The corresponding system functions HnjZwrf) were synthesized

on an analog computer as indicated in Figures 9 and 10. The system

function H4tJZvf) corresponding to the Gaussian power spectral

density W4 (f) was synthesized by stagger tuning 9 single tuned

filters. In this manner the poles of H4U2vf) were located at the

theoretical (33) pole positions corresponding to a 9 th order

approximation to the unrealizable Gaussian power spectral density.

Figure 11 shows a comparison of the sinusoidal gain of the filter

structure as a function of frequency with the theoretical Gaussian

function. The comparison is excellent.

The Wiener-Khinchin theorem gives the normalized

autocorrelation function for the above power spectra as:

co

f oWn(f) cos 2if'Tdf

Jf Wn(f) df
0 n = 0, 1,2, 3,4

The results of the integrations yield:

coo rcostcos nn,

P0 (Tr)=Sin.w{e II+2 eO T [!!wol-rIin!~]

n=1

(20)
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pl() = ( + wu 1IrT)e I 1 (21)

p2(-) = + w? lr + (W2r)2  -lZT (22)

p•.) = [1 + 3171 -2(w 3'r) 2 +-•(w: I)3] _W3 171

(23)

P4(T)= coso W4 eZ(To 7) (24)

The quantity wnr appearing in the normalized autocorrelation

functions is defined as normalized time and is denoted by un. All

probabilities and probability dcnsities reported in this report are

plotted with respect to normalized time un = Wn

The initiate commands discussed in Section 11-A above were

spaced approximately one second apart. Accordingly, in order to

obtain samples of zero-crossing intervals which are sufficiently

independent, the time constants and frequencies associated with

the power spectral densities were chosen as:

"T = T 3= 10m sec (25)

T = 5m sec (26)

fo = 80 cps (27)

f4 = 30.8 cps (28)

Also, for experimental convenience the synthesized power

spectral densities had a low freqiency cutoff of approximately 1 cps

and a high frequency cutoff of 8.5 kc.
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D. RANDOM POINT- PROCESS TRANSFORMATIONS

Consider the linear system shown in Figure 12.

GAUSSIAN H ( J2 wf) DI(J2 f) Ot(J2Vf )
NOISEH fHII

Figure 12 The Linear System.

The power spectral density for the Gaussian random process x(t)

is given by

Wx(f) = IH(J2wf)1 2  (29)

Similarly, the power spectral density for y(t) is given by

W y(f) = IHUZ•wf)1 21Dj(J2if)j 2 = Wx(f)IDl(j27f) I2 .

(30)

If Dl(J2vf) in the system function representing an ideal differentiator

then the stationary points of x(t) and the zero points of y(t) occur

simultaneously.

If y(t) is a Gaussian process having arbitrary power spectral

density W y(f), the average number of zero points per second is

given by (27)
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F o2 w 1f1/
2 0 Yf (31)

f 0 Wy(f)df

Hence, the average number of stationary points per seco-.d for a

Gaussian process x(t) having power spectral density W.(f) must be

2 [ f 2W x(f)4w 2f 2 df 11 -2 [ 0 0f4 W (f)df ] i/Z
01) W (f)4wr2 f2 

dif JD fZWx(f)df

(32)

This last equation agrees with Rice's tesult (27).

The average number of inflection points per second for a

Gaussian process x(t) having power spectral density Wx(f) can be

determined in a similar manner. Thus, if also D2 (jZwf) = jZwf, then

the average number of inflection points per second for a Gaussian

process x(t) having power spectral density W (f) must be

f 0oWx(f) 16v 4 f4 df . of 64Wx(f) df 1

f[oWx~f) 16¶Tff fdf] f/ F0f W xf )df /

(33)

The same transformation can be extended to higher derivatives.

A method for synthesizing a Gaussian process y(t) having

zero points corresponding in time with the stationary points of a
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I

Gaussian process x(t) having a Butterworth power spectral

density is shown in Figure 1 3.

GAUSSIAN H0 J wf) OlJ2wf ~--eNOISEH

Figure 13 Transformation of Stationary Point@ to Zero Points.

The circuit having the system function Dtj2rf) in shown in

Figure 14.

100PPf

IM

5K 0.02pf

Figure 14 The Synthesis of D(Zjwf).
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The system function DU2vtf) is given by

D(jZwf) = 2J tOW-2• (34)[1+j 10o'4 W

Accordingly, D(JZwf) has the property of a differentiator since

IDV(j2f)1 2 behaves like f2 to well within + i db in the frequency

range of interest (0-500 cps).

Taking D(jZnf) as ZJIO -w we find that

2 OD 2 [ ]-22 f2Wo(f)df=i Wo(f) df; • [ =4•i0-2 2 0 fo d
X ' 0 'y 0

(35)

and ° ih]1
= 4  ,w 1 0 t f [ S in. & - 6 . 0 0 7 (3 6 )

Ox S-i--

This final ratio was verified satisfactorily by using an RMS

voltmeter.

Oscilloscope photographs illustrating the transformation of

stationary points to zero points by the operator DoZwf) are shown

in Figure 15. The probability densities associated with the intervals

defined by the mathematical stationary points of a random process

consisting of a sine wave plus a Gaussian process were determined

experimentally by using the operator DO2ivf).

Figure 16 shows a complete block diagram of the measuring

and synthesis systems.
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Y(t\ x(t)

x (t)/

AimsK

x(t)-

y ( t)

Figure 15: The Stationary Points of x(t) and the Zero
Points of y(t) Occur Simultaneously.
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IV. MATHEMATICAL DEDUCTIONS FROM THE

PROBABILITY DENSITIES

A. Kohlenberg (4), P. I. Kuznetsov, P. L. Stratonovich and

V. I. Tikhonov (5), J. A. McFadden (Z), and perhaps others, have

derived some basic Identities relating p(n, T), the probability that

a given interval (t, t + T) contains exactly n points, and Pn (), the

probability density of the interval between the rnth and (m+n+l)th

points. These identities apply to general stationary point-processes.

Using McFadden's general result (26) we have for a point set

defined by the zeros of a random process:

OD

p(,T)= - .r [ Pn( - 2P n1 (1) + PnZ(i)] di

(37)

where

P = the expected number of zeros per unit time

P n() = the probability density function for the sum of
n+i successive zero-crossing intervals

pO(n, T) = the derivative with respect to T of the probability
that a given interval 'r contains exactly n zeros.

Also, by definition, we have

Z(n+i, 7) = " Pn(1) dl (38)

where

Z(n+i, T) = the conditional probability that the (n + i)th zero-
crossing point from a given zero-crossing point
in dT occurs after the time dT + 7.
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For n = 0, and the initial condition p(O, 0) = i, Equation (37) yields

p(OT) = f[ drt f Po(u) U " 'r + 1 (39)
0o

For n = 1 and the initial condition p(1, 0) = 0, Equation (37) yields

p(1,•')=p fT d'l T 1 Pl(,lc11-2 fo d- T Qo )o(Id +
0 fo0 d Fr1  P(.od~ IJ

(40)

For n = 0 Equation (38) becomes

Z(1,r) ,r Po(I)d. . (41)
T

For n = I Equation (38) becomes

co

Z(2,Tr) r T Ply(I) d (42)

Equations (39), (40), (41), and (42) were used to deduce

p(0,un), p(1un) Z(,un) and Z(,un) for n= 1,2, 3and4.

Similar expressions hold for the point set defined by the

zero points of a random-process consisting of a sine wave signal
f 0

of frequency yr" plus Gaussian noise such that the signal-to-noise

power ratio equals a. That is:

Pa(0, 'r) a fa d'" 1 f T P (,a)dI - J + I

0 0(4 (43)
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1,= T) a drt J Pj P a(I,a)dUZ sldT, (, acU+r
0 0 0 0

(44)

Za(,1T) = , P0(1,a) di (45)
OD

Zal(2 ,r) = P, (1a) dI (46)
T1

where

a the expected number of zeros per unit time when
the signal to noise power ratio equals a.

Equations (43), (44), (45) and (46) were used to deduce

pa(o.Uo), pa(1,uo), Za(1,Uo) and Za(Z,Uo) for a = 0.2., i and 4.

Similar expressions also hold for the point set defined by the

mathematical stationary points of a random process consisting of a
f

0
sine wave signal of frequency -T- plus Gaussian noise such that the

signal-to-noise power ratio equals a. That is:

ma(O, T) = Ya [ dT f M0 l(,a) df - Tr + I

(47)

1a ,T) = Na d T M ilI' ald•'Z fO M °( 1. a)dl[+ T0

(48)
00

SaIl T,) = f Mo0l(, a) di (49)

OD
S al(,,T) = f Ml, (,a) dit (50)
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where

va = the expected number of stationary points per unit

time when the signal-to-noise power ratio equals a.

Equations (47), (48), (49), and (50) were used to deduce

mra( O, u 0 ), ra(1,u 0 ), Sa( t, u0) and Sa(Z, u 0)foramO, .Z, 1and4.
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V. PROPERTIES OF THE PROBABILITY DENSITIES

A. EXPECTATIONS

Consider the point set shown in Figure 17 and defined by

the zero-crossing points of a Gaussian process. Let X, Y be two

successive zero-crossing intervals and let Z = X + Y. From symmetry

the expectation E(X) equals the expectation E(Y). Hence, E(Z)=ZE(X).

Accordingly, the expectations, Ei(un), associated with the Pt(un)

densities are related to the expectations, E 0(un),associated with

the P 0 (un) densities by:

Ei(un) = 2E 0 (un) for n = 1, 2, 3. 4 (51)

The exact theoretical expectations, E 0 (un), associated with

the P 0 (un) densities, or the average values of successive zero-crossing

intervals, are given by (27)

Successive Intervols, , Defined By Adjacent Stationary Points

I T T_

OR MEAN TIMEVALUE LEVEL I • • IM 1

Figure 17 Point Sets Defined by the
Zero-Crossing Points and
the Stationary Points of a
Gaussian Process.
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E O ( u n ) O D uPo( u )W n(1ud f _ 
_ _ _ _ _ _ _1_

n [ fWnl7f)d] Co [

(52)

forn= i,2,3,4

PION ) is the second derivative of the normalized autocorrelation

function Pn(un). The results for n = I, 2, 3, and 4 are:

E0 (u1 ) = i (53)

E0 (uZ) = 5. 4414 (54)

Eo(u 3 ) = 1.4050 (55)

E0 (u 4 ) = 3.1341 (56)

From Equation (51) the theoretical expectations, E1 (un),

associated with the P 1 (un) densities are equal to 2 E 0 (un) for

n = 1, Z, 3, 4. The expectations E 0 (un) and Ei(un) were also measured.

They are compared with the corresponding theoretical values in the

tables accompanying Figures 18, 19, 22, 23, 26, 27, 30, and 31. The

comparisons are satisfactory in all cases.

Similarly, the expectations, E 1 (u0 , a),associated with the

P 1 (uo, a) densities are related to the expectations, E0 (u0 , a), associated

with the Po(uo, a) densities by:

Ei(uo,a) = ZEo(uo, a) for all a (57)

The exact theoretical expectations, Eo(uo, a), associated with

the P 0 (uo, a) densities follow from a general result given by Rice (34)

and Middleton (3, 3a):
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-1

E(Uo a) f uP (u , a)du =2V 00 • ("b FI( ;n+-;'a

00 000 0 X n!
-n=o

for all a (58)

where

(Q)n = (cL) (cL + 1) (a + ?) ... ((t + n -i

(4)o = I

S average sine wave power
a = N = average noise power

Sin 4v
b -

4Sin -

iFi = the confluent hypergeometric function.

The results for a = 0, . Z, I and 4 are:

E o (uo, 0) = 5. 2587 (59)

Eo (u o, .Z)= 5. 4065 (60)

E (u ,I) = 5.8286 (61)

E (u , 4) = 6.2506 . (62)

For small values of "a", the random process consisting of a
f

0
sine wave signal of frequency -"- plus Gaussian noise is approximately

Gaussian. Accordingly, one could compute easily the approximate

theoretical expectations, E (u , a), associated with the Po(Uo, a)

densities by using an equation analagous to Equation (52). That is:

E *(u 0 a)=i [R 1(o.a)JIa ] /

(63)

RI"(u ,a) is the second derivative of the normalized autocorrelation
0 f

function, R(uo, a), defined by the power spectral density Wo(f)+S6(f-0).

R(uo, a) is given by:
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u

R(up(U)+a cos 00 (64)

o ) 1 + a

Equation (63) agrees with Bendat's result (15).

The results for a = 0, . 2, 1 and 4 are:

E (uo 0) = 5. 2587 (65)
0 0
,

E o(u, .Z) = 5. 3951 (66)
0 0

E (u i) = 5. 7031 (67)
0 0

Eo(o(u 4) = 6. 0306 (68)

From Equation (57) the exact theoretical expectations,

Ei(uo0 a), associated with the Pi(uo, a) densities are equal to

ZE o(u, a) for all a. The expectations E (U 0a) and EI(u0 , a)

for a = 1, .2, 1, and 4 were also measured. They are compared

with the corresponding exact theoretical values in the tables

accompanying Figures 34, 35, 38, 39, 42, 43, 46, and 47. The

comparisons are satisfactory in all cases.

Finally, the expectations, P 1 (uo, a), associated with the

MI(uo, a) densities are related to the expectations, e o(uo, a),

associated with the M (U , a) densities by:

S1 (uo, a) = 2 o(uo, a) for all a (69)

The exact theoretical expectations, o0 (U0 , a), associated with

the M 0 (u0 , a) densities follow by applying the transformation

associated with the ideal differentiator operator to the general

result given by Rice and Middleton:
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eo(u, a) = J' uMo(uo, a)du° = n (-ca)n Fl ;n+l;-ba

for all a (70)

where Sin

C --

t6Sin

The results for a = 0, .2, 1 and 4 are:

e (uo, 0) = 3. 7765 (71)

Po{Uo, .2) = 3.9429 (72)

8o(UO, 1) = 4. 5467 (73)

i 0o(Uo, 4) = 5.8138 (74)

Again, for small values of a" the random process
f

consisting of a sine wave signal of frequency --. plus Gaussian

noise is approximately Gaussian. Accordingly, one could compute

easily the approximate theoretical expectations, e (u , a), associated
0 0

with the Mo(Uo, a) densities by using an equation analagous to

Equation (52). That is:

0 0 L JV 1+ ac ]

(75)
R" (u , a) is the second derivative of the normalized autocorrelation

a 0

function, Rs(uo, a), defined by the power spectral density

)2 W0 (f) + 2 S6(f - -To ). This latter power spectral density results by

applying the transformation associated with the ideal differentiator

operator to the power spectral density
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f
Wo(f) + S6(f 2). R (uo, a) and R(uoP a) are related by:

R"(Uo, a)

Re(uo, a) 0 for all a (76)
R (0, a)

The results for a = 0, .2, 1, and 4 are:

e (1I ,0) = 3. 7769 (77)

(u, .Z) = 3.9341 (78)

e (XIo, 1) = 4. 3994 (79)

e*(uo, 4) = 5. 1910 (80)

From Equation (69) the exact theoretical expectations,

e (uo, a), associated with the Mi(uo, a) densities are equal to

Ze o(Uo, a) for all a. The expectations P o(Uo, a) and Ci(uo, a)

for a = 0, .2, 1, and 4 were also measured. They are compared

with the corresponding exact theoretical values and the approximate

theoretical values in the tables accompanying figures 50, 51, 54,

55, 58, 59, 62, and 63. The comparisons are satisfactory in

all cases.

If one represents the sine wave as the limit of a narrow-band
f

Gaussian process centered at T as the bandwidth approaches zero,

then it becomes clear that the expectations E*(Uo, a) and t*(Uo, a)

are exact for the case of a random process • (t, a) of the form:

F*(t, a) = R(t) Sin [ -'2- + A1(t) J + n(t) (81)
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In this last equation the random variable Rt has a Rayleigh

probability density function, 8t is uniformly distributed in the

interval (o, ZT), and n(t) is Gaussian noise having a power spectral

density Wo(f). In other words E*(uo, a) and , (U , a) are exact for

the Gaussian process, (t, a), defined by a very narrow-band
f

0
Gaussian signal centered at -T plus Gaussian noise having the

power spectral density W 0 (f). Equation (81) should be compared

with random process, t(t,a), defined by a sine wave signal

plus Gaussian noise which has the form:

t(t, a) = A0 Sin [ 0 + e (t)] + n(t) where A in a constant.

(82)

B. STANDARD DEVIATIONS AND CORRELATION

COEFFICIENTS

Since Z = X + Y, the variance of Z is given by:

Var(Z) = Var(X) + Var(Y) + ZCov(X, Y) (83)

where

Cov(X,Y) = E(XY) - E(X) E(Y)

The correlation coefficient, K(X, Y), of X, Y is given by

K(X, Y) = Cov(X, Y) (84)

V Var(X)Var(Y)

From symmetry, we have

Var(X) = Var (Y) (85)
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Hence,

Var (Z)= 2 [1 + K] Var (X) (86)

Let Kn be the correlation coefficient between two successive

zero-crossing intervals of a Gaussian process having the power

spectral density Wn(f). Then, the variances, a (un), associated
2

with the P 1 (U) densities are related to the variances, 0 ((u),

associated with the P (u n) densities by:

a l(u) = 2 [1 + Kn o (un) for n = 1,2, 3,4 (87)

Similarly,

0)• o=2, [1+ K] o 2 (uo,0) (88)

D (u 0) 2[,1 + 0 ] D o(uo. o) (89)

2 2 2 •u,
In the latter two equations a 1 (Uo, a), a0°(uo, a), D(,a) and

D o(u, a) are the variances associated with the respective densities
0 0

Pl(Uo, a), Po(uo, a), Mj(uo, a) and Mo(uo. a). Also K0 and oare

the correlation coefficients between two successive zero-crossing

intervals of the Gaussian processes having the respective power

spectral densities W0 (f) and uZ W0 (f).

McFadden (32) recently derived the following equations

valid for a general random process:
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oGo

00 U(T yl rd = C7r=_[' n

o n=1

(91)

where

r(r) = the normalized autocorrelation function of the
infinitely clipped random process

2GO = variance of successive zero-crossing intervals

Eo(r) = 7 = Expectation of successive zero-crossing intervals

Pn = correlation coefficient between the ith and (i+n)th
zero-crossing intervals

U(')dT = the conditional probability that a zero occurs
between t+T and t+-+dT given a zero at time t.

If one assumes that successive zero-crossing intervals form

a Markov chain in the wide sense, then pn = p and

(,o i-P l

A- > 0

for all I pt < 1 (92).

r• 2 +Pj

B Z (n- ) -1> (93
2ZE (T) T-P$

Equations (92) and (93) were used by McFadden (2) to compute a•

and p, for various Gaussian processes. We used Equations (92)

and (93) to compute oa and p, for most of the Gaussian processes
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considered in this report. In some cases our results differ

somewhat from those reported by McFadden. The standard

deviations resulting from the Markov assumption together with

the standard deviations computed from Equations (87), (88) and

(89) are compared with the experimental standard deviations in the

tables accompanying Figures 18, 19, 22, Z3, 26, Z7, 34, 35, 50,

and 51. From the comparisons of the standard deviations in the

tables accompanying Figures 26, 27, 50, and 51, we conclude

that successive zero-crossing intervals of some Gaussian processes

do not form a Markov chain in the wide sense.

Notice that the Markov assumption implies that if p1 > 0

then Pn > 0 for all n. Also, the Markov assumption implies the

inequalities given by Equations 92 and 93. These restrictions are

not clearly implied by the Gaussian character of the process and

depend only onthe Markov assumption. Accordingly, one might

surmise that the successive zero-crossing intervals of some

Gaussian processes do not form a Markov chain in the wide sense.

From Equations (90) and (91) we have that:

2 E(T) E+

n=X 0m o
Go

As an approximation, let us assume that X P2n-1 = 0. (95)
Then, n=Z

=E 0 0') -T B+1 A (96)
P1 -_ -Zo(y )
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By applying Equation (96) to most of the Gaussian processes

considered in this report and by using the experimental variances

for successive intervals, the experimental correlation coefficients

between two successive intervals were computed. The results

are given in the tables accompanying Figures 18, 22, Z6, 34, and

50.

If the variances for the sum of two successive intervals are

computed from Equations 87, 88, and 89 by using the experimental

variances for successive intervals and the experimental correlation

coefficients between two successive intervale,the results agree

with the measured variances for the sum of two successive

intervals to within the experimental error. Hence the experimental

values of the correlation coefficient& between two successive

intervals yield results consistent with experiment. This serves

as partial Justification for the assumption given by Equation (95).

If one assumes that pn = 0 for n t 2, then Equations

(90), (91), and (86), can be used to compute approximate

theoretical values of •o , P1 and a, for Gaussian processes. For

the Gaussianprocesses considered in this report, these approximate

theoretical values compare with our experimental values slightly better

thanthe corresponding theoretical values resulting from the Markov

assumption.
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For a Gaussian process, Rice (1) derived U(T')dT, see

Appendix, the conditional probability that a zero occurs between

t + T and t + T + dT given a zero at t. Hence,

OD

U(T) = X Pn(r) (97)

n=0

Also, for a Gaussian process, Rice (1) derived Q(T)dT, see

Appendix, the conditional probability that a downward zero-

crossing occurs between t + T and t + T + dT given an upward

zero-crossing at t. Hence

Go

Q(,r)= Z P2m('r) (98)
m=O

and 00

U(T) - Q(T)= X Pzm+1(r) (99)

m=O

From Figure 31 and Equation (98) we see that the first

portion of Q(u 4 ) generates Po(u4 ). Similarly, from Figure 3Z

and Equation (99) we see that the first portion of U(u 4 ) - Q(u4 )

generates P 1 (u 4 ). The first normalized portion of the Q(u 4 )

function was used to compute approximate theoretical means and

variances associated with the Po(U4 ) density. Similarly,

the first normalized portion of the U(u 4 ) - Q(u4 ) functi6n was used

to compute approximate theoretical means and variances associated
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with the PI(u 4 ) density. By using these computed variances in

Equation (87), the approximate theoretical correlation coefficient

between two successive intervals, K4 , was computed. Because

of the unfavorable propagation of errors associated with

Equation (87), K4 should be regarded as a rough estimate.

These approximate theoretical results are compared with

other results in the table accompanying Figures 30 and 31.

All experimental standard deviations were computed by

using the theoretical mean values. In general, these standard

deviations would decrease somewhat if one were to use the

experimental mean values in the computations.
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VI. PROBABILITIES AND PROBABILITY DENSITIES DEFINED

BY THE ZERO POINTS OF GAUSSIAN PROCESSES

A. POWER SPECTRAL DENSITY W1 (f)

Probabilities and probability densities defined by the

zero-crossing points of a Gaussian process having a power spectral

density W1(f) are presented in Figures 18, 19, 20, and 21. Theore-

tical approximations derived by S. 0. Rice () and J. A. McFadden

(2) are presented in Figures 18 and 19 for comparison purposes.

Figure 18 also presents for comparison an exponential density

which was suggested by R. R. Favreau, H. Low, and I. Pfeffer (19)

an the exact probability density. From this latter comparison

we see that the experimental P0 (ut) and the exponential curve

deviate significantly in the neighborhoods of ut = I and u2 = 5.

Accordingly, we conclude that the exact probability density is not

the suggested exponential.

From Equation (98) we have that:

Q(T) ;t PO(T) for all -r (100)

Accordingly, Rice's Q(ut) function serves as an upper bound

for P0 (ul) and is presented in Figure 18. Recently, M. S. Longuet-

Higgins (8) deduced bounds for P0 (0) theoretically as 0. 382 <

P0 (O) < Q(0) = 0. 406 and deduced the approximate value P0 (O) -- 0. 385.

The inequality 0. 382 < P0 (0) was used by Longuet-Higgins (8) to

disprove rigorously the exponential conjecture of Favreau et al.

From Equation (99) we have that:
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U(- Q(r) 2 PI(T) for all T. (101)

Accordingly, Rice's U(ul) - Q(ul) function serves as an

upper bound for P 1 (u1 ) and is presented in Figure 19. Longuet-

Higgins (8) deduced bounds for PI(0) theoretically as 0. 0645

< P1 (0) < U(O) - Q(0) r0 0726 and deduced the approximate value

PI(O) 1 0.0653.

G. M. White (18) experimentally determined the following

probabilities concerning the zero-crossings of a Gaussian process

having a power spectral density W 1 (f):

(1) W+(0, u1 ), the probability of having no zero-

crossings with positive slope in a time interval uI.

(2) W+(t,Ui), the probability of having one zero-crossing

with positive slope in a time interval u .

In general

1W+(0,.r) = p(O,0r) + P(1,T) (102)

and

W +0, "r) = 7 p(I, T) + p(2, T) + .p(3, T) (103)

or

p(2,T) e W+(1 T) _ p[1,T) (104)

Equation (10Z) states that the interval can contain no upcrossings

in two ways: Either it contains no crossings at all, or it contains

one. If it contains one, then with conditional probability . it is

either upward or downward.
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Equation (103) states that the interval can contain exactly

one upcrossing in three ways: Either it contains one crossing, or

two, or three. If it contains one, then with conditional probability
I"I it is upward or downward. If it contains two, then one of them

must be upward. If it contains three, then one or two of them

will be upward, each with probability .

Figure 20 compares p(0, u1 ) + . p(1, u,) with W+(O, ul). The

comparison is excellent. Also, Figure 20 presents both W+(1, u1 )

and p(i, ul). Accordingly, an upper bound for p(2, us) can be

readily computed from inequality (104). This upper bound agrees

satisfactorily with the approximate theoretical initial behavior

p(Zud) 0.818 (u1 ) 2 which was deduced by Longuet-Higgins(8).

Figure 19 compares the convolution of P0 (u1 ) with itself,

P 0 (uI) * P 0 (ui), and Pi(ui). This comparison serves to

demonstrate that two successive sero-crossing intervals are

statistically dependent. A theorem it proved in Section IX which

asserts that for Gaussian processes the sum of m + I successive

zero-crossing intervals and the sum of the next n + 1 successive

zero-crossing intervals are statistically dependent. The

theorem applies for all nonnegative integral m and n.

B. POWER SPECTRAL DENSITY W,(f)

Probabilities and probability densities defined by the

zero-crossing points of a Gaussian process having a power spectral
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density W2 (f) are presented in Figures 22, 23, 24, and 25.

Theoretical approximations derived by Rice (I) and McFadden (2)

are presented in Figure 22 for comparison purposes. Figure 2?

also presents an experimental probability density reported by

Favreau, et al (19). Rice's U(u 2 )-Q(u 2 ) function in presented

in Figure 23 for comparison purposes. Figure 23 also compares

the convolution of P 0 (u2 ) with itself, P 0 (u2 ) * P 0 (u2 ), and

Pj(u2 ). This latter comparison was intended to exhibit the

statistical dependence of two successive intervals. In this case

the convolution function is nearly equal to Pi(u,). However, as the

theorem of Section IX asserts, two successive zero-crossing

intervals are still statistically dependent.

The theoretical initial values of P 0 (u2 ) and Pj(u2 ) are

zero since Rice's U(u 2 ) function is initially zero.

C. POWER SPECTRAL DENSITY W 3 (f)

Probabilities and probability densities defined by the zero-

crossing points of a Gaussian process having a power spectral density

W3 (f) are presented in Figures 26, 27, 28, and 29. Theoretical

approximations derived by Rice (1) and McFadden (2) are

presented in Figure 26 for comparison purposes. Figure 26 also

presents an experimental probability density reported by

Favreau, et al. (19).



-76-

101
SN

~ if)

4 q 4

VA 0 - u4J
CL. -i3 -u

4~c 0a. 1* 1

5> hi

0~ I -4

w U
C S L

+i +1 (.0 .04:
aCI I ,, 1

o ~o

4* -4

z. 4-1 '0 d

0 W



-77-

0

.4.

w 14

U- 4

0 001

z 1
*0 to.4.0 %" -+s N

ga* >

1100 -C
- 30 ON. z

CD -

S0 914

hii "k~

0 i-

N



-78-

0
C'4 J
CM)

0

0 N

D U.

14

1 64

0. 4

go0 . 14

00 4kr *0

00

*0 00
00 1'

-0 0

0 ~ 0 0 C



-79.

CMi

0 :

00
a, CJ

oEe0

o o"

'4- 0 I I

03

4A 0

0' U

0 4

0 001
00

0 0

0 N

- 0 o 00



-80-

to 40 C
02 0 toN

020 c0 0  *-.! I.!- N

* n bce ~
o 0 u

44

- tv 't 5

0u 0 00
+1 (4 4Co 4-

C- 4~

* W

4 1
x~ U0 02

/0x vI § 4

-~4 A-
CL

d ai



0

*0~ .. 4d U
24 0 0

.4 0
1z aV,.

00G FA --

*1 .

Sw .~ u0
r,4 ,

- 0-

In L ) (A l

-10

-~ C. .

= -'0

ii V.- -LO
x m

b 0

4J 0 -4

N - 0
N

A~



___ ___ ___ ___ ___ CW

0

to 4J "0

0)4

Cto

a- 0

CL \ 4 - 4

_0 0

OD

\. *0*N

OD to CM
6 6 6



-83-

4$

%- :10

14

0014 a4

u t

%.- -:Ma

0 ~ ~ L 0 a

OD (814
.go



-84-

Rice's Q(u 3 ) function serves as an upper bound for P 0 (u 3 )

and is presented in Figure 26. Longuet-Higgins (8) deduced

bounds for P 0 (O) theoretically as 0. 612 < P 0 (O) < Q(O) = 0.650

and deduced the approximate value P 0 (0) " 0. 616. Also, Longuet-

Higgins (8) deduced bounds for P 1 (0) theoretically as 0. 103 <

Pj(0) < U(0) - Q(0) = 0. 116 and deduced the approximate value

Pt(o)" o0.104.

The experimental probabilities p(O, un) for n = 1, 2, 3

satisfy theorems 1, 3 and Equation (22) of D. Slepianls (13) recent

paper regarding bounds for theme probabilities.

Rice's [U(u 3 )-Q(u 3 ) ] function it presented in Figure 27 for

comparison purposes. Figure 27 also compares the convolution of

P 0 (u 3 ) with itself, P 0 (u 3 ) * Po(u 3 ), and P 1 (u 3 ). This latter

comparison serves to demonstrate that two successive zero-

crossing intervals are statistically dependent.

The experimental probability densities PO(un) for n = 1, 2, 3

agree very well with theoretical approximations recently published

by Longuet-Higgins (8). The approximate theoretical initial

values of Longuet-Higgins were used in the normalization of the

experimental densities P 0 (un) and Pi(un) for n = 1, 3.

D. POWER SPECTRAL DENSITY W4 (f)

Probabilities and probability densities defined by the

zero-crossing points of a Gaussian process having a power spectral

density W4 (f) are presented in Figures 30,,31, 32, and 33. Theoretical

approximations derived by Rice (1) are presented in Figures 30 and 31 for
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comparison purposes. Figure 31 also compares the convolution of the

first normalized portion of Q(u 4 ) with itself, Q(u 4 )*Q(u 4 ). and the

first normalized portion of U(u 4 ) - Q(u 4 ). In accordance with

Equations (98) and (99), this comparison serves to demonstrate

that two successive zero-crossing intervals are statistically

dependent. The theoretical initial values of Po(u 4 ) and P 1 (u4 )

are zero since Rice's U(u 4 ) function is initially zero.

The results in Figures 32 and 33 were computed by using

Equations (39), (40), (41), and (42). The first normalized portions

of Q(u 4 ) and U(u 4 ) - Q(u 4 ) served as Po (u4) and P 1 (u 4 )

respectively.

In order to obtain good experimental estimates of a•(u4) and

ai(N4). we see from Figures 30 and 31 that the experimental densities

P0(U4) and P 1 (u4 ) must be measured with finer resolution.

Accordingly, our present experimental estimates of a o(u4 ) and

S1 (u4 ) are not worth reporting.

Notice that a "Q factor" of 6. 1 as defined in Eqiation (18) is

approximately the minimum 'Q factor" representing a "narrow-band

system" as defined in communication theory. Accordingly, the

problem of theoretically determining P 0 ('-) and Pi(7') for narrow-

band Gaussian processes is practically solved by using Rice's

Q(T) and[U(.r) - Q(.)]functions as the generating functions of Po(T)

and PI(') in accordance with Equations (98) and (99).
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A portion of the above work dealing with Gaussian processes

has been published recently in the IRE Transactions on

Information Theory (35).
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VII. PROBABILITIES AND PROBABILITY DENSITIES DEFINED

BY THE ZERO POINTS OF A SINE WAVE PLUS A

GAUSSIAN PROCESS

Probabilities and probability densities defined by the

zero-crossing points of the random process, ý(u, a), consisting
f

0
of a sine wave of frequency -"2 plus Gaussian noise having a

power spectral density Wo(f) are presented in Figures 34 thru

49. The ratio of the average sine wave power, S, to the average

noise power, N, is denoted by the parameter a. For small values

S
of a = ' the random process g(u, a) is approximately Gaussian

with normalized autocorrelation function, R(uo, a), given by

Equation (64). Accordingly, Rice's probability function Q (u0o a)dua

approximates the conditional probability that a downward zero-

crossing of 6(u, a) occurs between u + u0 and u + u + di0, given ano

upward zero-crossing of E(u, a) at time u. In accordance with

Equation (98), Q (u , a) serve as approximations to the initial

behavior of P 0 (u0 , a) for small "a' and are presented in Figures

34, 38, 42, and 46. Figure 34 also presents McFadden's

theoretical approximation for P 0 (Uo, 0). Q*(u 0 , a) du 0 is the

exact conditional probability that a downward zero-crossing of

t (u, a) occurs between u + u0 and u + u0 + duo, given an upward

zero-crossing of t*(u, a) at time u. The process (u,a) is

defined by Equation (81) and the process t(u, a) in defined by

Equation (8Z). When a = 0 the processes g(u, 0) and *(u, 0) are

identical.
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S

Similarly, for small values of a R, Rice's probability

function U *(uo, a)du0 approximates the conditional probability that a

zero of t(u, a) occurs between u+u 0 and u+u 0 +du 0 given a zero of

t(u, a) at time u. In accordance with Equation (99), U*(u 0 , a)-Q*(u0 , a)

serve am approximations to the initial behavior of P 1 (u 0 , a) for small "a"

and are presented in Figures 35, 39, 43, and 47. Notice that U *(u 0 a)du°

is the exact conditional probability that a zero of t (u, a) occurs between

u+u 0 and u+u 0 +duO given a zero of C (u, a) at time u.

Figure 35, 39, 43, and 47 also compare the convolution

of Po(u0 , a) with itself, Po(u0 , a)*P 0 (u 0 , a), and P 1 (u 0 , a) for

a = 0, .2, 1, 4. These latter comparisons serve to demonstrate

that successive zero-crossing intervals of g(u, a) are statistically

dependent.

For a general random process, McFadden (28) showed that:

GO

n=0

r°°(r) is the second derivative of the normalized autocorrelation

function of the infinitely clipped random process. The normalized

autocorrelation function r(u 0 , a), see Appendix, for the infinitely

clipped process T (u, a) can be computed from a general result

given by Davenport (40) and Middleton (3a).

Figure 46 compares the experimental P 0 (u 0 , 4) with a first

portion of r"(u0 , 4) E0(u0 , 4) in accordance with Equation (105).
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The compariaon is excellent. Figure 47 compares the experimental
r"(uo, 4)

PI(u0 , 4) with a second portion of --4- E0 (u 0 , 4) in

accordance with Equation (105). Again, the comparison is

excellent.

4
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VIII. PROBABILITIES AND PROBABILITY DENSITIES DEFINED

BY THE STATIONARY POINTS OF A SINE WAVE PLUS

A GAUSSIAN PROCESS

Probabilities and probability densities defined by the

mathematical stationary points of the random process e(u, a),

defined by Equation (8Z), are presented in Figures 50 thru 65. For

S
small values of a =q. the random process

d (u, a)

9(u,a) = dtua) (106)

is approximately Gaussian with normalized autocorrelation function,

Rs(U0 1 a), given by Equation (76). Accordingly, Rice's probability

function Q:(u0 , a) du 0 approximates the conditional probability that

a downward zero-crossing of q(u, a) occurs between u + u0 and

u + u0 + duo, given an upward zero-crossing of •(u, a) at time u.

In accordance with Equation (98), Q (u0 , a) serve as approximations

to the initial behavior of M 0 (u 0 , a) for small "a" and are presented

in Figures 50, 54, 58, 6Z. Notice that Q (u0 , a) duO is the exact

conditional probability that a downward zero-crossing of

* (u, a) = *a) (107)S(ua) = du

occurs between u + u0 and u + u0 + du0 , given an upward zero-

crossing of n *(u, a) at time u.

S
Similarly, for small values of a = N, Rice'. probability

function U:(u0 , a) duo approximates the initial behavior of the
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conditional probability that a stationary point of t(u, a) occurs

between u + uo and u + u0 + du, given a stationary point of t(u, a)

at time u. In accordance with Equation (99), U (u0 , a)-Q (u0 , a)

serve am approximations to the initial behavior of M 1 (u 0 , a) for

small "a" and are presented in Figures 51, 55, 59, and 63. Notice

that U(uO, a)du is the exact conditional probability that a stationary
at

point of • (u, a) occurs between u I u. and u + u0 + duo given a

stationary point of *(u, a) at time u.

Figures 51, 55, 59, and 63 also compare the convolution

of MO(Uo0 a) with itself, M (u0,a) * Mo(U0, a), and MI(u 0 , a)

for a = 0, .2, 1, 4. These comparimons serve to demonstrate

that two successive intervals defined by the adjacent stationary

points of t(u, a) are statistically dependent.

The normalized autocorrelation function r (uo, a), see

Appendix, for the infinitely clipped process n(u, a) can be computed

by applying the transformation associated with the ideal differentiator

operator to the general result given by Davenport and Middleton.

Figure 62 compares the experimental Mo(U0 , 4) with a first
r' (U o, a)

portion of 4 o(u 0 , 4) in accordance with Equation (105).

The comparison is satisfactory.

Figure 63 compares the experimental M 1 (u0 , 4) with a second
r" (uo, a)

portion of 4 e0(UO, 4) in accordance with Equation (105).

Again, the comparison is satisfactory.
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IX. STATISTICAL DEPENDENCE OF ZERO-CROSSING

INTERVALS

The recent work of Longuet-Higgins (8) leads one to the

following important theorem.

Theorem: If ý(t) is a Gaussian process having a finite

expected number of zeros per unit time, then the sum of (m+l)

successive zero-crossing intervals of ý(t) and the sum of the

next (n+i) successive zero-crossing intervals t(t) are statiAtically

dependent for all nonnegative integral m, n.

Proof:

For Gaussian processes having power spectral densities

with asymptotic behavior f-4 (the singular case), Longuet-Higgins

showed that P (W), the probability density function for the sum of

(Q + 1) successive zero-crossing intervals, tends to a positive

value as v-r 0 . Accordingly,

T

lir Pm+n+l(T)ý lim Pm(.T)*Pn(rT)= liM 'r Pm()Pn(T-I)d1 = 0
T-- 0  T -- 0 T--.*O 0

(108)

This completes the proof of the theorem for the singular case.

For Gaussian processes having power spectral densities

with asymptotic behavior other than f-4 (the regular case), Longuet-

Higgins showed that

i (m+Z)(m+3)-Z

Pr (T) = 0 (,r )as r -- 0 (10)
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I
Hence, as yr-• 0

(m+n+3)(m+n+4)-Z
P (ni 0 (n+ ) (410)

and
(n42)(n.i 1)+ (--n+2)(m+3)- 3Pm('r) * Pn(") = 0 (Zr~

(111)

Suppose Equations (1 i0)and (111) were equal for some nonnegative

integral m, n. Then,

7(m+n+ 3 )(m4+n+4)-2 = T(n+2)(n+ 3). Z(m+2)(m+ 3)-3
(112.)

and,

mn + m +n+ I = 0 (113)

Equation (113) is clearly false for all nonnegative integral m,n.

Accordingly, as T- 0

P + + t('r) A'mPr) * Pn(T) (114)

This completes the proof of the theorem. For m = n = 0, the

content of the theorem was given by Palmer (11) and McFadden

(28).

For certain Gaussian processes, the convolutions shown in

Figures 19, 27, 31, 35, and 51 verify the truth of the theorem

for m = n = 0.

In order to observe the statistical dependence between the ith

and (i+n)th zero-crossing intervals of a random process, two of

the experimental systems described in Section ILA were used to

display 5000 random samples of the ith and (i+n)th zero-crossing

intervals on an oscilloscope. The skipping discussed in Section
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ILA was set at ii or i1 each with probability . The resulting

intensity pattern on the oscilloscope represents an approximation to

the joint probability density of these intervals. If the intensity

pattern corresponding to n -•o is similar to the intensity pattern

corresponding to n = ni, then one can conclude that the ith and

(i+nl)th zero-crossing intervals of a finite memory process are

practically independent.

For a Gaussian process having power spectral density W3 (f),

Figure 66 illustrates the statistical dependence between the ith

and (i+n)th zero-crossing intervals of the process for n = 1, Z, 3, 4,

and co. n = co represents a condition such that the two zero-

crossing intervals are separated by approximately 71 average

zero-crossing intervals. This condition was convenient experimentally

and corresponds to a one second time separation between the

zero-crossing intervals. Notice the symmetry of the intensity

patterns about the straight line passing through the origin with

a slope of 450. This symmetry results from the fact that the

joint probability density of the intervals is invariant under a time

reversal of the random process.

The conditional mean of the (i+n)th zero-crossing interval

given the ith zero-crossing interval is found from Figure 66 by

considering narrow vertical strips of the intensity patterns and
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determining the center of gravity for each strip when unit

intensity is assigned unit mass. A line joining these points

is called a regression curve. By using the principle of least

squares one can determine the best fitting straight line to the

regression curve. The slope of this best fitting straight line

represents the correlation coefficient Pn" From Figure 66

we see that when n > 3 the regression curve is approximately a

line parallel to the axis of abscissas, and the conditional mean

value is approximately equal to the mean value of the zero-

crossing intervals. Thus when n > 3, pn - 0 or the zero-

crossing intervals are approximately uncorrelated.

By comparing the intensity pattern for n = co to the others

we see that when n ! 4 the statistical dependence practically

vanishes. However, when we compare the intensity pattern

for n = co to that corresponding to n = i we see significant

dependence. This dependence is in agreement with the theorem

of this section. These observations may be useful to guide the

development of models aimed at developing a suitable theory

of the zero-crossing intervals of Gaussian processes. For

example, we see immediately that a theory based on the

independence of successive zero-crossing intervals is destined

to be inadequate.
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Similar photographs were made for all of the other random

processes considered in this report. For the Gaussian process

having-the power spectral density W4(f)' the correlation

coefficient Pn is non-zero when n s; 4, and the ith and (i+nth zero-

crossing intervals are statistically dependent when n -_ 4 - For

all of the other random processes, the correlation coefficient Pn

practically vanishes when n k 3, and the statistical dependence

between the ith and (i+n)th zero-crossing intervals practically

vanishes when n ýt 4.
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X. APPLICATIONS

The sampling technique for generating Gaussian noise which

was described in Section IIIB is one application resulting from this

study of the zero-crossing intervals. Another application concerns

an integral technique for measuring pulse duration and has been

reported in the literature (36).

In certain countermeasure applications of the zero-crossing

phenomenon one requires a modulating noise waveform having

an *optimum* Po(T'), the probability density function for

successive zero-crossing intervals. Usually one asks that a

certain mean, Eo(r), and a certain standard deviation, o op be

associated with the P0 (T). The other required properties of

P0 (T) for "optimum" conditions are somewhat vague. Here we

shall give a few results concerning the *optimum* Po0 (T).

A. THE MOST RANDOM DISTRIBUTION OF

SUCCESSIVE ZERO-CROSSING INTERVALS

Consider a sequence of successive zero-crossing

intervals {'T} generated by a sample function of an ergodic random

process having a finite expected number of zeros per unit time.

Let each of the .ri have a common probability density P(Jr), and

let the n dimensional Joint probability density for the

sequence of intervals ({ri} be denoted by P(Tj,7Z,-r ... Tn). In

order to determine the most random distribution of successive
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zero-crossing intervals, we adopt the criterion that the relative

entropy per z7ero-crossing interval, HI, given by

HI Hi PIT 1, Tr2 .TnMnPl'-,r2 1 .I rndr dr/
H' =- lihn n ........ Tn ...

n-o o

(115)
is a measure of the randomness. By a well-known

principle from information theory, the maximum of HO occurs

when the sequence of successive zero-crossing intervals, {,ri), are

statistically independent. That is when

PT, .. T n Pý'olr) for all n (116)

Accordingly, in order to maximize H' we need only maximize

the relative entropy, H, given by

H = - 0 Po(T) in Po0(T) dT (117)

Let the constraints be:
OD

SP(•) dr (4118)
0

f 0rPo(T-) dir = E0(r) (4119)

and 
0

.F -Po 0 () di- = EJ() (iZO)
0

By applying the calculus of variations we find that the maximum

relative entropy, H, results when:
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po(7) __et_-tZD(

where

E o() = m + XD

Eo (T Z m +Z +Dm + D2

+(X) L _-x2 /z

OW.F e'Y /2 d
,(x)=.L -- e 1  dy

Given E 0 () and Eo(T -) one can determine m and D and hence

Po0 (T) by using the tables reported by K. Pearson (37).

Accordingly, for a given mean, E0 (T), and a given standard

deviation, oo [ =) - EoZ(Tr) " the most random distribution

of successuve zero-crossing intervals is represented by the

truncated Gaussian probability density function shown in Figure 67

and by Equation (116). Since successive zero-crossing intervals

must be statistically independent in order to yield the maximum

relative entropy per zero -crossing interval, the theorem of

Section IX implies that a Gaussian process or an infinitely clipped

Gaussian process can not generate the most random distribution

of successive zero-crossing intervals. Moreover, for Gaussian
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Figure 67 The Truncated Gaussian Probability
Density, PO(W), Represents the Most
Random Distribution of Successive
Zero-Crossing Intervals Having a
Given Mean and a Given Standard
Deviation.



-138-

processes of finite memory, P 0 (T) for large T must have an

asymptotic exponential (5, 13, 38, 41) behavior such as:

P QTZ)

Physically, this means that the random process having a P0 (r)

given by Equation (121) cannot be a Gaussian process or an

infinitely clipped Gaussian process. That is, one cannot obtain

a random process having a P0 (T) given by Equation (121) by the

familiar technique of spectrally shaping "white' Gaussian noise

with a linear filter.

It is interesting to note that if the constraints are given by

Equations (118) and (119) only, then the maximum entropy H

occurs when
T

p() e(123)

The Gaussian process having power spectral density W 1 (f)

generates a P 0 (T) that approximates an exponential density of the form

given by Equation (123) as is seen in Figure 18. Furthermore,

successive zero-crossing intervals of this Gaussian process

are approximately independent as is seen in Figure 19.

B. TECHNIQUE FOR ESTIMATING THE ASYMPTOTIC

EXPONENTIAL BEHAVIOR OF Po(T)

Here we describe a technique for estimating the a

in Equation (122).Lewis (39) and McFadden (32) showed that:

E(0 () Z ZEo(T) ,f a p(O,T) dT . (124)
0
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If PO is asymptotically exponential then p(O, r) and Z(1, T) are

also asymptotically exponential as is seen from Equations 39 and

41. Hence, in order to determine a in Equation (122) we determine

a "reasonable" exponential to tie on to the measured p(O, r) such

that Equation (124) is satisfied for measured E(Jr 2) and theoretical

Eo('"). Semi-log plots of P 0 (Tr), p(O, T) and Z(1, T) are useful for

determining where to tie on the exponential. However, the point

of "tie on" is still somewhat arbitrary. Accordingly, we end up

with at most rough estimates of a. Using normalized time, some

rough eatimatem of an associated with the asymptotic exponential

behavior:
-a u

Po(un)• e n n (125)

are given below.

For tie on point at ul = 8, a1 = 0.28

For tie on point at u2 = 12, aZ = 0.11

For tie on point at u3 = 4, a3 = 0.47
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XI. CONCLUSIONS

The results of this study of the zero-crossing intervals of

random processes should prove useful for guiding the development

of some new techniques which are useful in both science and

technology.

The sampling technique for generating Gaussian noise is

perhaps the simplest technique available for generating such noise.

The integral technique for measuring pulse duration should

be especially useful for airborne or space instrumentation applications.

At present none of the probabilities or probability densities

presented in this report can be derived explicitly by analytical methods.

The probability density Po(r) for the case of Gaussian noise

having a power spectral density Wi(f) is not exactly! e-/I.

The hypothesis that successive zero-crossing intervals of

Gaussian processes from a wide sense Markov chain is false for

some Gaussian processes.

The experimental initial values of PO(un) and Pj(un) for

n = 1, 3 obtained by extrapolation agree satisfactorily with the

approximate theoretical initial values.

The results of this study should prove useful for guiding the

development of models aimed at developing a suitable theory for the

zero-crossing intervals of certain random processes. In general

the models must not assume that successive zero-crossing

intervals of random processes are statistically independent.
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For the Gaussian process having the power spectral density

W4(f), the correlation coefficient Pn is nonzero when n < 4, and

the ith and (i4n)th zero-crossing intervals are statistically

dependent when n , 4. For all of the other random processes,

the correlation coefficient Pn practically vanishes when n > 3,

and the statistical dependence between the ith and (i+n)th zero-

crossing intervals practically vanishes when n a 4.
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APPENDIX

For a Gaussian process having a normalized autocorrelation

function p(r), the conditional probability, U(-r) d.r, that a zero

occurs between t + T, t + T + d" given a zero at t it given by:

U(T)dT u• [I-(,.,o '[ 1]- ,r,] ") [,(t]nS H]

(126)

w h ere [ M 2

H= M2 3  M22 - M2 3

S! tan -I H ! T

M22 , ,PI(O) [1. - P2(T)] -[I'1-(]) 2

M 2 ý I'T) 1- P2 (T) I + P(T) Irp'(T)]1

For a Gaussian process having a normalized autocorrelation

function p(.r), the conditional probability, Q(T) dr, that a downward

zero-crossing occurs between t + T, t + i + dr given an upward

zero-crossing at time t is given by:
I M3

Q(T) dT d [ 1p"(O)] [23]I1 - P2(T)]1•r[+Hcot'I(-H)]

(127)

where

0!g ot (-H) !5
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The normalized autocorrelation function, r(u 0 , a), for the

infinitely clipped process g(u, a), defined by Equation (82), is

given by: 00Z h °n 2n 0 Co-)-8

r(uo a)=-4 0 n 11 PI(U )-8 0 h +

n =I m=1
odd n odd m

m~n 0T o!a ofun yegomrc funtio

n= g m=f
odd (m+n)

(128)

where

hz = 1 2 nam F,( ;m+1 ;-.l

m, n (2m2r -) FZ(re+n)]

1 F1 = confluent hypergeometric function

r = gamma, function

a = signal-to-noise power ratio.

The normalized autocorrelation function, r(u, a), for the

infinitely clipped process i(u, a) defined by Equation (106), is

given by:

0 h 2  u OD mu
ro(Uo#a)= -4 ) -n hmCos 0 +

a 01 n 0 1 m,0

n= 1 L0 M=
odd n odd m=X°° •,m., n-"•o] C os }

n=I m=1 0

odd (rn+n) (129)
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where

h2  1 Z'(b)~~ F 2m+n ;m+1;.-bal
m;,n 2 (a

(Zrn!) 2 I2-(m+n)

Sin 3
b T

4Sin.'j
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